Research Article

Feature Selection Using Maximum Feature Tree Embedded with Mutual Information and Coefficient of Variation for Bird Sound Classification

Table 4

Comparison of Kappa, accuracy, and F1 scores with feature selection methods in Birds dataset.

Evaluation indicatorClassifierFeature selection method
CorGRIGORRFSUCSMICV
Number of features|the highest value

KappaJ4872 | 0.8560 | 0.8559 | 0.8657 | 0.8673 | 0.8368 | 0.8451 | 0.8438 | 0.88
NB68 | 0.7937 | 0.8636 | 0.8739 | 0.8670 | 0.7736 | 0.8758 | 0.7946 | 0.88
SVM63 | 0.9344 | 0.9352 | 0.9361 | 0.9364 | 0.9546 | 0.9365 | 0.9551 | 0.95
RFs71 | 0.9750 | 0.9736 | 0.9773 | 0.9772 | 0.9570 | 0.9753 | 0.9630 | 0.97

AccuracyJ4872 | 88.1860 | 88.1859 | 89.0957 | 89.0973 | 86.3665 | 87.2752 | 87.2736 | 90.96
NB64 | 83.6337 | 89.0936 | 88.1839 | 89.0970 | 81.8136 | 90.0058 | 83.6334 | 90.90
SVM63 | 94.5444 | 94.4541 | 94.0061 | 94.4564 | 96.3646 | 94.4565 | 96.3651 | 93.63
RFs71 | 98.1250 | 98.1236 | 98.1273 | 98.1872 | 96.3670 | 98.1253 | 97.2730 | 98.12

F1 scoreJ4872 | 0.8860 | 0.8859 | 0.8957 | 0.8973 | 0.8665 | 0.8751 | 0.8738 | 0.87
NB64 | 0.8337 | 0.8936 | 0.8939 | 0.8970 | 0.8137 | 0.9058 | 0.8334 | 0.90
SVM63 | 0.9449 | 0.9441 | 0.9461 | 0.9464 | 0.9646 | 0.9465 | 0.9651 | 0.93
RFs71 | 0.9650 | 0.9855 | 0.9873 | 0.9873 | 0.9670 | 0.9854 | 0.9730 | 0.98