Research Article
Feature Selection Using Maximum Feature Tree Embedded with Mutual Information and Coefficient of Variation for Bird Sound Classification
Table 6
MICV-ERMFT compared to other methods of Kappa and DRR.
| Dataset | Classifier | Method | Cor | GR | IG | OR | RF | SU | CS | MICV | ORI | Kappa|DRR (%) |
| Birds | J48 | 0.83 | 52 | 0.88 | 44 | 0.83 | 53 | 0.85 | 53 | 0.81 | 49 | 0.86 | 53 | 0.79 | 50 | 0.87 | 58 | 0.83 | 0 | NB | 0.76 | 40 | 0.74 | 49 | 0.77 | 53 | 0.75 | 53 | 0.74 | 44 | 0.76 | 53 | 0.76 | 53 | 0.81 | 53 | 0.77 | 0 | SVM | 0.92 | 52 | 0.92 | 44 | 0.89 | 53 | 0.87 | 44 | 0.92 | 53 | 0.88 | 53 | 0.92 | 53 | 0.93 | 57 | 0.92 | 0 | RFs | 0.95 | 44 | 0.95 | 52 | 0.95 | 40 | 0.93 | 49 | 0.96 | 53 | 0.94 | 49 | 0.94 | 53 | 0.93 | 50 | 0.93 | 0 |
| Crane | J48 | 0.64 | 44 | 0.74 | 50 | 0.63 | 50 | 0.70 | 53 | 0.63 | 40 | 0.62 | 50 | 0.63 | 53 | 0.76 | 53 | 0.70 | 0 | NB | 0.73 | 50 | 0.75 | 52 | 0.71 | 44 | 0.73 | 53 | 0.72 | 50 | 0.71 | 50 | 0.69 | 46 | 0.76 | 53 | 0.75 | 0 | SVM | 0.83 | 42 | 0.78 | 52 | 0.73 | 50 | 0.82 | 53 | 0.77 | 50 | 0.73 | 50 | 0.84 | 53 | 0.84 | 52 | 0.84 | 0 | RFs | 0.85 | 50 | 0.83 | 40 | 0.83 | 50 | 0.84 | 53 | 0.84 | 50 | 0.83 | 42 | 0.84 | 50 | 0.88 | 53 | 0.88 | 0 |
|
|