Research Article

NSGA-III-Based Deep-Learning Model for Biomedical Search Engines

Table 2

Training analysis of the NSGA-III-based CNN model.

ModelSpecificityAUCSensitivityF-measureAccuracy

TCMSearch [17]78.691.4878.561.6878.391.4578.671.5478.491.52
SVM [16]78.691.3978.521.4278.541.4576.751.3378.681.32
G-Bean [3]77.651.3077.251.4977.761.1678.150.7878.210.72
TTA10 [19]78.180.7978.190.8778.320.6677.260.5477.310.82
ViLiP [18]78.280.7177.390.5878.310.4878.450.5678.340.35
SOSC [1]78.451.1578.461.2178.560.7978.390.5278.330.74
GeoNames [20]78.690.4878.680.4378.460.4978.760.7978.540.76
CRRP [21]78.460.4678.720.5577.460.4378.530.4278.570.55
ASE [22]79.320.4679.130.3979.210.4949.300.3979.290.49
CNN [23]79.350.5279.430.5279.290.5479.280.4379.280.53
VDP [23]79.530.5281.110.3580.460.4679.430.3679.500.39
Proposed DCNN83.790.4683.710.7983.350.5183.690.5083.350.52