Research Article
NSGA-III-Based Deep-Learning Model for Biomedical Search Engines
Table 2
Training analysis of the NSGA-III-based CNN model.
| Model | Specificity | AUC | Sensitivity | F-measure | Accuracy |
| TCMSearch [17] | 78.691.48 | 78.561.68 | 78.391.45 | 78.671.54 | 78.491.52 | SVM [16] | 78.691.39 | 78.521.42 | 78.541.45 | 76.751.33 | 78.681.32 | G-Bean [3] | 77.651.30 | 77.251.49 | 77.761.16 | 78.150.78 | 78.210.72 | TTA10 [19] | 78.180.79 | 78.190.87 | 78.320.66 | 77.260.54 | 77.310.82 | ViLiP [18] | 78.280.71 | 77.390.58 | 78.310.48 | 78.450.56 | 78.340.35 | SOSC [1] | 78.451.15 | 78.461.21 | 78.560.79 | 78.390.52 | 78.330.74 | GeoNames [20] | 78.690.48 | 78.680.43 | 78.460.49 | 78.760.79 | 78.540.76 | CRRP [21] | 78.460.46 | 78.720.55 | 77.460.43 | 78.530.42 | 78.570.55 | ASE [22] | 79.320.46 | 79.130.39 | 79.210.49 | 49.300.39 | 79.290.49 | CNN [23] | 79.350.52 | 79.430.52 | 79.290.54 | 79.280.43 | 79.280.53 | VDP [23] | 79.530.52 | 81.110.35 | 80.460.46 | 79.430.36 | 79.500.39 | Proposed DCNN | 83.790.46 | 83.710.79 | 83.350.51 | 83.690.50 | 83.350.52 |
|
|