Research Article

NSGA-III-Based Deep-Learning Model for Biomedical Search Engines

Table 3

Validation analysis of the NSGA-III-based CNN model.

ModelSpecificityAUCSensitivityF-measureAccuracy

TCMSearch [17]78.461.1078.791.1078.111.7678.311.6178.121.71
SVM [16]78.311.6278.241.6878.211.5978.421.6278.241.73
G-Bean [3]78.351.6878.411.6178.431.6978.501.4278.451.53
TTA10 [19]78.511.4678.581.3578.361.5578.461.5178.481.31
ViLiP [18]78.561.4678.551.3378.601.4378.541.3578.631.35
SOSC [1]77.321.6477.231.3477.591.6377.131.4877.181.44
GeoNames [20]77.461.5477.431.4077.411.3977.331.2577.351.33
CRRP [21]77.511.2377.521.4477.321.3077.521.2177.321.35
ASE [22]77.460.6877.720.7477.650.7277.640.4677.650.39
CNN [23]77.681.2177.820.7277.821.3377.701.3277.791.32
VDP [23]78.130.3678.350.7878.560.7578.650.3278.760.36
Proposed DCNN81.560.7881.520.7481.150.6981.560.8981.360.89