Research Article

Short-Term Power Load Forecasting of Integrated Energy System Based on Attention-CNN-DBILSTM

Table 2

Comparison of prediction accuracy evaluation indicators.

DateEvaluation indexResult
CNN-LSTMCNN-BILSTMCNN-DBILSTMAttention-CNN-DBILSTMAttention-CNN-DBILSTM considering multiple load correlation

5.7–5.13MAPE (%)6.286.075.085.374.36
RMSE (kW)718.45682.24669.59577.23538.67
6.6–6.12MAPE (%)6.786.125.895.343.77
RMSE (kW)732.12673.32591.21563.20522.69
7.13–7.19MAPE (%)6.325.895.775.433.98
RMSE (kW)693.87632.51588.82569.32502.07
8.3–8.9MAPE (%)6.176.035.764.783.94
RMSE (kW)701.09656.01621.22587.91531.73
9.12–9.18MAPE (%)6.125.675.544.504.11
RMSE (kW)698.34636.99598.18543.43523.97
10.13–10.20MAPE (%)6.846.495.924.973.48
RMSE (kW)722.45680.65617.10598.32541.54
11.21–11.27MAPE (%)6.886.335.654.914.21
RMSE (kW)721.31670.82621.15585.19539.86
12.2–12.8MAPE (%)6.875.915.265.133.51
RMSE (kW)691.03673.64622.88580.96562.37