Research Article
Domain Adaptation through Photorealistic Enhanced Images for Semantic Segmentation
Table 1
Semantic segmentation results of adapting GTAV to Cityscapes.
| Methods | Road | Sidewalk | Building | Wall | Fence | Pole | Light | Sign | Veg | Terrain |
| Baseline (ResNet) | 75.8 | 16.8 | 77.2 | 12.5 | 21.0 | 25.5 | 30.1 | 20.1 | 81.3 | 24.6 | AdvEnt [8] | 89.9 | 36.5 | 81.6 | 29.2 | 25.2 | 28.5 | 32.3 | 22.4 | 83.9 | 34.0 | AdaSegNet [19] | 86.5 | 36.0 | 79.9 | 23.4 | 23.3 | 23.9 | 35.2 | 14.8 | 83.4 | 33.3 | CLAN [7] | 87.0 | 27.1 | 79.6 | 27.3 | 23.3 | 28.3 | 35.5 | 24.2 | 83.6 | 27.4 | Ours | 89.4 | 46.0 | 83.1 | 27.6 | 22.7 | 33.6 | 33.6 | 27.3 | 83.6 | 34.5 | IntraDA [9] | 90.6 | 36.1 | 82.6 | 29.5 | 21.3 | 27.6 | 31.4 | 23.1 | 85.2 | 39.3 | Ours + Intra | 91.9 | 49.0 | 84.2 | 29.2 | 24.7 | 33.0 | 34.0 | 34.9 | 84.6 | 39.4 |
| Methods | Sky | Person | Rider | Car | Truck | Bus | Train | Mbike | Bike | mIoU |
| Baseline (ResNet) | 70.3 | 53.8 | 26.4 | 49.9 | 17.2 | 25.9 | 6.5 | 25.3 | 36.0 | 36.6 | AdvEnt [8] | 77.1 | 57.4 | 27.9 | 83.7 | 29.4 | 39.1 | 1.5 | 28.4 | 23.3 | 43.8 | AdaSegNet [19] | 75.6 | 58.5 | 27.6 | 73.7 | 32.5 | 35.4 | 3.9 | 30.1 | 28.1 | 42.4 | CLAN [7] | 74.2 | 58.6 | 28.0 | 76.2 | 33.1 | 36.7 | 6.7 | 31.9 | 31.4 | 43.2 | Ours | 78.1 | 59.4 | 29.8 | 79.6 | 36.5 | 41.6 | 0.1 | 23.6 | 25.3 | 45.0 | IntraDA [9] | 80.2 | 59.3 | 29.4 | 86.4 | 33.6 | 53.9 | 0.0 | 32.7 | 37.6 | 46.3 | Ours + intra | 81.4 | 59.8 | 29.8 | 84.2 | 35.3 | 44.9 | 0.0 | 28.8 | 33.7 | 47.5 |
|
|