Research Article

Domain Adaptation through Photorealistic Enhanced Images for Semantic Segmentation

Table 1

Semantic segmentation results of adapting GTAV to Cityscapes.

MethodsRoadSidewalkBuildingWallFencePoleLightSignVegTerrain

Baseline (ResNet)75.816.877.212.521.025.530.120.181.324.6
AdvEnt [8]89.936.581.629.225.228.532.322.483.934.0
AdaSegNet [19]86.536.079.923.423.323.935.214.883.433.3
CLAN [7]87.027.179.627.323.328.335.524.283.627.4
Ours89.446.083.127.622.733.633.627.383.634.5
IntraDA [9]90.636.182.629.521.327.631.423.185.239.3
Ours + Intra91.949.084.229.224.733.034.034.984.639.4

MethodsSkyPersonRiderCarTruckBusTrainMbikeBikemIoU

Baseline (ResNet)70.353.826.449.917.225.96.525.336.036.6
AdvEnt [8]77.157.427.983.729.439.11.528.423.343.8
AdaSegNet [19]75.658.527.673.732.535.43.930.128.142.4
CLAN [7]74.258.628.076.233.136.76.731.931.443.2
Ours78.159.429.879.636.541.60.123.625.345.0
IntraDA [9]80.259.329.486.433.653.90.032.737.646.3
Ours + intra81.459.829.884.235.344.90.028.833.747.5