Research Article

Strength Model of Cemented Filling Body Based on a Neural Network Algorithm

Table 3

Comparison of the measured and predicted values.

Test sampleCompressive strength of filling body (MPa)Error (%)Absolute error (%)Goodness of fit (%)
Measured valuePredicted valueAbsolute deviation

σ6(3d)1.011.0108−0.0008−0.07920.079299.92
σ7(3d)0.950.90750.04254.47374.473795.53
σ8(3d)0.630.6607−0.0307−4.87304.873095.13
σ9(3d)0.610.6223−0.0123−2.01642.016497.98
σ6(7d)1.511.49840.01160.76820.768299.23
σ7(7d)1.351.31840.03162.34072.340797.66
σ8(7d)0.810.8282−0.0182−2.24692.246997.75
σ9(7d)0.880.81340.06667.56827.568292.43
σ6(28d)2.612.6185−0.0085−0.32570.325799.67
σ7(28d)2.252.2829−0.0329−1.46221.462298.54
σ8(28d)1.481.4831−0.0031−0.20950.209599.79
σ9(28d)1.461.4653−0.0053−0.36300.363099.64