Research Article

The Performance Research of the Data Augmentation Method for Image Classification

Table 1

The network architecture of AlexNet, VGG16, and InceptionV3 used in the experiments. Inception blocks A, B, C,D, and E are shown in the appendix.

AlexNetVGG16InceptionV3
StagePatch size/stride/or remarksStagePatch size/stride/or remarksStagePatch size/stride/or remarks

ConvConv2 times 3 × 3 × 64Conv3 × 3 × 32/2
Max poolMax pool2 × 2/2Conv3 × 3 × 32/1
NormalizationConv2 times 3 × 3 × 128Conv padded3 × 3 × 64/1
Conv padded5 × 5 × 256/2Max pool2 × 2/2Max pool3 × 3/2
Max pool3 × 3/2Conv2 times 3 × 3 × 256Conv1 × 1 × 80/1
NormalizationMax pool2 × 2/2Conv3 × 3 × 192/1
Conv padded3 × 3 × 384/1Conv3 × 3 × 512InceptionA3 times
Channel 32/64/64
Conv padded3 × 3 × 384/1Conv2 times 3 × 3 × 512InceptionB1 times
Conv padded3 × 3 × 256/1Max pool2 × 2/2InceptionC4 time
Channel 128/160/160/192
Max pool3 × 3/2Conv3times 3 × 3 × 512InceptionD1
FC4096Max poolInceptionE2
FC4096FC4096Global average pool
FC1000FC4096FC1000
SoftmaxFC1000Softmax
Softmax