Research Article
Discrete Generalized Inverted Exponential Distribution: Case Study Color Image Segmentation
Table 11
Comparison between developed method and other segmentation methods.
| ā | DGIEMM | FSC | GMM | K-means | ā | DGIEMM | FSC | GMM | K-means |
| I1 | Accuracy | 0.9951 | 0.9494 | 0.6259 | 0.6259 | I4 | 0.9886 | 0.9086 | 0.9013 | 0.9515 | AR | 0.9803 | 0.8068 | 0.9572 | 0.9134 | 0.9548 | 0.6679 | 0.6441 | 0.7422 | Hubert | 0.9805 | 0.8078 | 0.8634 | 0.8886 | 0.9548 | 0.6679 | 0.6442 | 0.7141 | NMI | 0.9574 | 0.7474 | 0.8373 | 0.8726 | 0.9208 | 0.6419 | 0.5919 | 0.6986 | I2 | Accuracy | 0.9995 | 0.9880 | 0.8956 | 0.8956 | I5 | 0.9998 | 0.9964 | 0.9899 | 0.5614 | AR | 0.9978 | 0.9510 | 0.6224 | 0.6224 | 0.9993 | 0.9858 | 0.9600 | 0.0785 | Hubert | 0.9979 | 0.9526 | 0.6260 | 0.6260 | 0.9993 | 0.9858 | 0.9601 | 0.0543 | NMI | 0.9931 | 0.9076 | 0.5820 | 0.5820 | 0.9978 | 0.9691 | 0.9276 | 0.1884 | I3 | Accuracy | 0.9913 | 0.9867 | 0.9280 | 0.9274 | I6 | 0.9982 | 0.9928 | 0.8972 | 0.9198 | AR | 0.9647 | 0.9468 | 0.7227 | 0.7206 | 0.9915 | 0.9666 | 0.6047 | 0.6251 | Hubert | 0.9653 | 0.9476 | 0.7326 | 0.7306 | 0.9928 | 0.9716 | 0.6311 | 0.7240 | NMI | 0.9306 | 0.8926 | 0.6554 | 0.6537 | 0.9762 | 0.9160 | 0.5463 | 0.6547 |
|
|