Mathematical Problems in Engineering / 2022 / Article / Tab 3 / Research Article
Meta-IP: An Imbalanced Processing Model Based on Meta-Learning for IT Project Extension Forecasts Table 3 Comparison of AUC and BACC across models trained with various sampling methods on the IT project extension forecast tasks. Bold figures reflect the row maximum.
Model 1st -year dataset 2nd -year dataset 3rd -year dataset 4th -year dataset 5th -year dataset AUC BACC AUC BACC AUC BACC AUC BACC AUC BACC Naive Bayesian 0.967 84.3 ± 0.11 0.958 83.2 ± 0.03 0.962 85.7 ± 0.10 0.74 87.2 ± 0.08 0.963 85.6 ± 0.09 Bagging 0.943 73.2 ± 0.05 0.957 77.2 ± 0.02 0.963 73.9 ± 0.04 0.962 78.3 ± 0.07 0.972 75.2 ± 0.09 SMOTE 0.952 70.8 ± 1.30 0.952 66.8 ± 0.90 0.979 71.2 ± 1.20 0.955 69.3 ± 0.80 0.957 69.5 ± 1.10 SVM 0.921 79.2 ± 1.00 0.934 83.4 ± 0.90 0.958 81.3 ± 0.80 0.963 80.2 ± 1.10 0.954 82.7 ± 1.20 SMEOTE+ 0.955 72.4 ± 0.02 0.945 74.3 ± 0.03 0.935 72.7 ± 0.01 0.937 77.3 ± 0.05 0.943 74.8 ± 0.07 SMOTE+ 0.946 73.5 ± 0.03 0.927 72.7 ± 0.01 0.947 73.5 ± 0.04 0.953 76.7 ± 0.03 0.938 72.8 ± 0.05 Meta-IP 0.975 89.7 ± 0.05 0.965 90.1 ± 0.06 0.988 91.2 ± 0.02 0.985 89.3 ± 0.03 0.976 91.8 ± 0.07