Research Article

A Real-Time Framework for Human Face Detection and Recognition in CCTV Images

Table 3

Results for KNN.

No. of featuresTraining dataNumerical methodsk = 1k = 2k = 3k = 4k = 5

590Euclidean89.0115%89.7889%79.0841%76.5861%75.278%
Manhattan94.7623%90.0457%88.6113%86.9326%86.0086%
80Euclidean87.8664%80.2338%77.7842%75.2137%73.5403%
Manhattan93.7989%89.0839%87.6401%85.9456%84.8975%

1090Euclidean88.3589%79.7717%77.8163%76.1214%75.0927%
Manhattan93.7989%89.4494%88.4072%87.1582%77.0927%
80Euclidean86.8185%77.905%75.9567%74.377%73.4407%
Manhattan93.6811%88.3288%87.335%86.0392%85.3475%

1590Euclidean86.383%76.6452%74.7327%73.293%72.5651%
Manhattan93.9484%88.2299%87.3221%86.1644%85.618%
80Euclidean84.5773%74.3589%72.5164%71.1934%70.4926%
Manhattan92.8172%86.6614%85.9425%84.7646%84.1484%