Research Article
A Deep Learning Approach to Optimal Sampling Problems
| System and control | Parameters | Values |
| Neural networks | Hidden layers | 1 | Number of neurons | 5 |
| Soft greedy policy | Exploration degree | 0.3 |
| 2D system, periodic impulse control | Pole of the system | 0 | Weight parameter | 2 | Steps | 1000 | Batch | 10 | Integer | 200 | Precision | | The range of | |
| 2D system, event-based impulse control | Pole of the system | 0 | Weight parameter | 2 | Steps | 1000 | Batch | 10 | Integer | 200 | Precision | | The range of | |
| 3D system, periodic impulse control | Matrix | | Weight parameter | 2 | Steps | 1000 | Batch | 10 | Integer | 200 | Precision | | The range of | |
| 3D system, event-based impulse control | Matrix | | Weight parameter | 2 | Steps | 1000 | Batch | 10 | Integer | 200 | Precision | | The range of | |
|
|