Research Article

A Novel Faster RCNN with ODN-Based Rain Removal Technique

Table 1

Quantitative result analysis of existing with proposed methods in terms of various measures.

Test imagesMethodPSNRSSIMFSIMUIQI

Image 1DID22.4090.8890.9270.967
DSC22.3020.8630.9260.953
LP22.2270.8890.9190.911
UGSM22.7630.9090.9330.911
TIP18.0450.8360.9110.830
CVPR23.3250.9020.9210.875
KGCNN27.8510.9570.9570.978
DDCN30.2760.9630.9630.979
FRCNN-ODN32.8990.9740.9720.981

Image 2DID25.2940.8510.9240.813
DSC22.2190.5980.8350.904
LP23.0340.7800.8720.806
UGSM20.6260.6410.8240.784
TIP19.2150.6480.8510.757
CVPR23.7810.6740.8820.846
KGCNN31.2310.9570.9700.930
DDCN33.7500.9620.9620.978
FRCNN-ODN34.8530.9710.9750.982

Image 3DID22.3590.8650.9020.975
DSC22.5190.8460.8980.992
LP22.3930.8940.9070.987
UGSM22.3820.9130.9210.985
TIP18.7930.8720.9030.969
CVPR24.0130.9020.9080.994
KGCNN28.0310.9660.9540.997
DDCN33.4510.9640.9640.997
FRCNN-ODN34.8600.9730.9730.998