Research Article

COMSATS Face: A Dataset of Face Images with Pose Variations, Its Design, and Aspects

Table 4

Proposed PAL approach.

Input: A set of input images with I = {1,2, ……., I} classes and J images of each class.
Do for i = 1, …, I
  (2) convert RGB images to grey,
  (3) estimate and crop face .
  (4) update mean and standard deviation of each image,
  (5) calculate mean image of each class, .
Final training images of each class, .
Initialize mislabelled distribution over m,
Do for
  (1) if t = 1, choose i samples per class for the learner.
  (2) train LDA feature extractor.
  (3) build a classifier ht.
  (4) calculate pseudo loss, et
  (5) calculate
  (6) if , abort the loop
  (7) update the distribution
Final classifier of training image, hf .
Generate a matching score.
Output: Maximum matching score (M score), I recog = argmax (Mscore).