Research Article
The Start of Combustion Prediction for Methane-Fueled HCCI Engines: Traditional vs. Machine Learning Methods
Table 5
The performance of employed models on the test dataset.
| Parameter | Model | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| Residual less than 2 CAD (%) | 98.81423 | 92.49012 | 98.81423 | 0.395257 | 98.81423 | 9.486166 | 98.41897 | 26.08696 | 44.26877 | 77.0751 | 15.41502 | Residual less than 3 CAD (%) | 100 | 99.60474 | 100 | 0.790514 | 100 | 16.60079 | 100 | 34.78261 | 55.73123 | 89.72332 | 26.48221 | Residual less than 4 CAD (%) | 100 | 100 | 100 | 0.790514 | 100 | 25.29644 | 100 | 46.24506 | 73.12253 | 95.25692 | 33.99209 | MAE | 0.8233 | 0.9926 | 0.7878 | 484.0682 | 0.8226 | 7.8129 | 0.7766 | 4.3073 | 2.7197 | 1.3818 | 7.7372 | MSE | 0.9541 | 1.4513 | 0.8547 | 352987.6 | 0.9519 | 87.2833 | 0.8889 | 25.8072 | 11.5298 | 3.4353 | 92.1935 | RMSE | 0.9768 | 1.2047 | 0.9245 | 594.1276 | 0.9756 | 9.3425 | 0.9428 | 5.08 | 3.3955 | 1.8534 | 9.6017 | Score | 0.9039 | 0.8539 | 0.9139 | -35526.2 | 0.9041 | −7.7848 | 0.9105 | −1.5974 | −0.1604 | 0.6542 | −8.279 |
|
|