Research Article
Analyzing the Spatio-Temporal Characteristics and Influencing Factors of “AI + Education” Network Attention in China
Table 4
Summary of panel model results.
| Variable | All provinces in China | Eastern Region | Central Region | Western Region |
| Intercept | −7.782 (−12.335) | −6.438 (−2.648) | −10.226 (−9.673) | −7.962 (−2.588) | lnx1 | 0.426 (3.419) | −0.163 (−0.447) | 0.143 (0.894) | −0.680 (−2.276) | lnx2 | 0.208 (2.826) | 0.152 (0.645) | 0.167 (1.140) | 0.496 (2.097) | lnx3 | 0.588 (9.414) | 1.188 (5.961) | 1.134 (8.963) | 1.254 (6.337) | lnx4 | 0.172 (3.896) | −0.264 (−1.438) | −0.064 (−0.571) | −0.185 (−0.510) | lnx5 | −0.108 (−2.791) | −0.360 (−2.899) | −0.267 (−4.219) | −0.540 (−4.592) | R2 | 0.705 | 0.71 | 0.883 | 0.843 | Model type | POOL | RE | POOL | FE |
|
|
Note: < 0.05, < 0.01, t value is in parentheses. |