Research Article

A Sparse Gating Convolutional Recurrent Network for Traffic Flow Prediction

Table 2

The details of module on TaxiBJ dataset.

HyperparameterConvGRUSConvGRUSConvGRU+ConvLSTMSConvLSTMSConvLSTM+

CNN layers222222
Number of filters in CNN8 (first layer), 16 (second layer)
Kernel size in CNN(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)
Stride in CNN1 (first layer), 2 (second layer)
Unit layers111111
Hidden channels of unit646464646464
Kernel size in unit(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)
Input of gating mechanism
DCNN layers222222
Number of filters in DCNN8 (first layer), 2 (second layer)
Kernel size in DCNN(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)
Stride in DCNN2 (first layer), 1 (second layer)
Batch size161616161616
Timestep101010101010
Epoch300300300300300300
OptimizerAdam [36]AdamAdamAdamAdamAdam
Learning rate0.00020.00020.00020.00020.00020.0002
StrategyEarly-stoppingEarly-stoppingEarly-stoppingEarly-stoppingEarly-stoppingEarly-stopping