Research Article
Framework for Classification of Chest X-Rays into Normal/COVID-19 Using Brownian-Mayfly-Algorithm Selected Hybrid Features
Table 3
Initial results achieved with pretrained deep learning methods.
| Method | Pooling | TP | FN | TN | FP | AC | PR | SE | SP | F1S | NPV |
| AlexNet | MP | 221 | 17 | 228 | 14 | 0.9354 | 0.9404 | 0.9286 | 0.9421 | 0.9345 | 0.9306 | AP | 223 | 12 | 230 | 15 | 0.9437 | 0.9370 | 0.9489 | 0.9388 | 0.9429 | 0.9504 |
| VGG16 | MP | 223 | 16 | 231 | 10 | 0.9458 | 0.9571 | 0.9331 | 0.9585 | 0.9449 | 0.9352 | AP | 224 | 14 | 233 | 9 | 0.9521 | 0.9614 | 0.9412 | 0.9628 | 0.9512 | 0.9433 |
| VGG19 | MP | 222 | 12 | 227 | 19 | 0.9354 | 0.9212 | 0.9487 | 0.9228 | 0.9347 | 0.9498 | AP | 228 | 19 | 219 | 14 | 0.9313 | 0.9421 | 0.9231 | 0.9399 | 0.9325 | 0.9202 |
| ResNet18 | MP | 230 | 16 | 218 | 16 | 0.9333 | 0.9350 | 0.9350 | 0.9316 | 0.9350 | 0.9316 | AP | 231 | 13 | 222 | 14 | 0.9437 | 0.9429 | 0.9467 | 0.9407 | 0.9448 | 0.9447 |
| ResNet50 | MP | 216 | 19 | 228 | 17 | 0.9250 | 0.9270 | 0.9191 | 0.9306 | 0.9231 | 0.9231 | AP | 227 | 16 | 219 | 18 | 0.9292 | 0.9265 | 0.9342 | 0.9241 | 0.9303 | 0.9319 |
| ResNet101 | MP | 229 | 13 | 220 | 18 | 0.9354 | 0.9271 | 0.9463 | 0.9244 | 0.9366 | 0.9442 | AP | 219 | 15 | 230 | 16 | 0.9354 | 0.9319 | 0.9359 | 0.9350 | 0.9339 | 0.9388 |
|
|