Research Article
Framework for Classification of Chest X-Rays into Normal/COVID-19 Using Brownian-Mayfly-Algorithm Selected Hybrid Features
Table 5
Investigational outcome of VGG16 with deep and hybrid features.
| Feature | Classifier | TP | FN | TN | FP | AC | PR | SE | SP | F1S | NPV |
| Deep features | SoftMax | 224 | 14 | 233 | 9 | 0.9521 | 0.9614 | 0.9412 | 0.9628 | 0.9512 | 0.9433 | DT | 227 | 8 | 231 | 14 | 0.9542 | 0.9419 | 0.9660 | 0.9429 | 0.9538 | 0.9665 | RF | 228 | 15 | 226 | 11 | 0.9458 | 0.9540 | 0.9383 | 0.9536 | 0.9461 | 0.9378 | NB | 230 | 11 | 224 | 15 | 0.9458 | 0.9388 | 0.9544 | 0.9372 | 0.9465 | 0.9532 | KNN | 229 | 7 | 225 | 19 | 0.9458 | 0.9234 | 0.9703 | 0.9221 | 0.9463 | 0.9698 | SVM | 226 | 10 | 232 | 12 | 0.9542 | 0.9496 | 0.9576 | 0.9508 | 0.9536 | 0.9587 |
| Optimal Deep + HF | SoftMax | 236 | 3 | 234 | 7 | 0.9792 | 0.9712 | 0.9874 | 0.9710 | 0.9793 | 0.9873 | DT | 238 | 4 | 232 | 6 | 0.9792 | 0.9754 | 0.9835 | 0.9748 | 0.9794 | 0.9831 | RF | 240 | 6 | 231 | 3 | 0.9812 | 0.9877 | 0.9756 | 0.9872 | 0.9816 | 0.9747 | NB | 239 | 5 | 232 | 4 | 0.9812 | 0.9835 | 0.9795 | 0.9831 | 0.9815 | 0.9789 | KNN | 244 | 0 | 232 | 4 | 0.9917 | 0.9839 | 1.0000 | 0.9831 | 0.9919 | 1.0000 | SVM | 238 | 6 | 231 | 5 | 0.9771 | 0.9794 | 0.9754 | 0.9788 | 0.9774 | 0.9747 |
|
|