Research Article
Towards Proactive Surveillance through CCTV Cameras under Edge-Computing and Deep Learning
Table 2
Results comparison of all trained models.
| Evaluation matrices | Faster RCNN | R-FCN | YoloV4 | Hybrid method |
| True positive | 551 | 581 | 576 | 586 | False negative | 99 | 77 | 105 | 98 | False positive | 89 | 33 | 65 | 35 | True negative | 590 | 638 | 593 | 610 | Accuracy | 0.85 | 0.91 | 0.87 | 0.90 | Precision | 0.86 | 0.93 | 0.90 | 0.94 | Recall | 0.84 | 0.88 | 0.84 | 0.86 | F1 score | 0.85 | 0.91 | 0.87 | 0.89 | Avg frames/sec | 5–17 | 7 | 55 | (i) 55 -> (ii) 31 |
|
|