Research Article
Evaluation of Using Genetic Algorithm and ArcGIS for Determining the Optimal-Time Path in the Optimization of Vehicle Routing Applications
Algorithm 1
Pseudocode for GA implementation.
(1) | ►Input: Graph (V, E) | (2) | fNode/ initial node in the route / | (3) | dNode/ destination node / | (4) | ►Output: Ch[]/array of Genes represents the optimal time route / | (5) | Define: Adj [][]/ 0, 1 Check nodes adjacency in the graph / | (6) | Ch [0] ← fNode | (7) | Pz ← Population size | (8) | Cr ← Crossover rate | (9) | Mr ← Mutatino rate | (10) | for each i, j where j = PZ | (11) | Create_Chromosome (fNode, dNode) | (12) | F ← Calculate Fitness Value for each chromosome | (13) | End for | (14) | Count ← 0 | (15) | Gen ← 1 | (16) | While Count ≤ 10 do | (17) | Ch1, Ch2 ← RouletteWheel _Selection () | (18) | Ch1,Ch2 ← Crossover (Ch1, Ch2) | (19) | Ch3 ← Mutation (Ch1) | (20) | Ch4 ← Mutation (Ch2) | (21) | F1 ← Fitness Value for the first chromosome | (22) | F2 ← Fitness Value for the second chromosome | (23) | Fm ← Minimum Value of fitness function | (24) | If Gen > 1 && Fm (Gen-1) = = Fm (Gen-2) | (25) | Count ++ | (26) | if count > 10 | (27) | Break | (28) | else | (29) | count = 0 | (30) | End If | (31) | End while | (32) | Gen ++ | (33) | Go to 17 |
|