Research Article
A Novel Intelligent-Based Intrusion Detection System Approach Using Deep Multilayer Classification
Algorithm 1
Deep multilayer classification.
| | Inputs: X - input dataset, | | | Subsampling size | | | Output: Reconstruction loss for anomaly test data | | | Step 1: Initialize data = { }; | | | Step 2:# Initializing a MinMax Scaler | | | scaler = MinMaxScaler() | | | Step 3:# Instantiating the Autoencoder | | | model = Autoencoder() | | | # creating an early_stopping | | | early_stopping = EarlyStopping(monitor = 'val_loss', | | | patience = 2, | | | mode = 'min') | | | # Compiling the model | | | model.compile(optimizer = 'Adam', | | | loss = 'mae') | | | Step 4: # mlp = Sequential() # initializing model | | | # input layer and first layer with 50 neurons | | | mlp.add(Dense(units = 50, input_dim = X_train.shape [1], activation = 'relu')) | | | # output layer with softmax activation | | | mlp.add(Dense(units = 5,activation = 'softmax')) |
|