Research Article

A Novel Intelligent-Based Intrusion Detection System Approach Using Deep Multilayer Classification

Algorithm 1

Deep multilayer classification.
Inputs: X - input dataset,
 Subsampling size
Output: Reconstruction loss for anomaly test data
Step 1: Initialize data = { };
Step 2:# Initializing a MinMax Scaler
 scaler = MinMaxScaler()
Step 3:# Instantiating the Autoencoder
 model = Autoencoder()
 # creating an early_stopping
 early_stopping = EarlyStopping(monitor = 'val_loss',
  patience = 2,
  mode = 'min')
 # Compiling the model
 model.compile(optimizer = 'Adam',
  loss = 'mae')
Step 4: # mlp = Sequential() # initializing model
 # input layer and first layer with 50 neurons
 mlp.add(Dense(units = 50, input_dim = X_train.shape [1], activation = 'relu'))
 # output layer with softmax activation
 mlp.add(Dense(units = 5,activation = 'softmax'))