Research Article
An Automatic Isotropic Triangular Grid Generation Technique Based on an Artificial Neural Network and an Advancing Front Method
Table 2
Unnormalized training dataset of a typical edge (or front).
| Input | Output | | | | | | | | | | | Type |
| 3.0902 | 9.5106 | 0.5864 | 4.9156 | −2.0834 | 6.0788 | −3.0902 | 9.5106 | −2.4626 | 0.8065 | 1 | 3.0902 | 9.5106 | 0.5864 | 4.9156 | −2.0834 | 6.0788 | −8.0902 | 5.8779 | −2.4626 | 0.8065 | 1 | 3.0902 | 9.5106 | 0.5864 | 4.9156 | −2.0834 | 6.0788 | −2.4626 | 0.8065 | −2.4626 | 0.8065 | 3 | 3.8014 | 3.2664 | 0.5864 | 4.9156 | −2.0834 | 6.0788 | 3.0902 | 9.5106 | −2.4626 | 0.8065 | 1 | 3.8014 | 3.2664 | 0.5864 | 4.9156 | −2.0834 | 6.0788 | −3.0902 | 9.5106 | −2.4626 | 0.8065 | 1 | 3.8014 | 3.2664 | 0.5864 | 4.9156 | −2.0834 | 6.0788 | −8.0902 | 5.8779 | −2.4626 | 0.8065 | 1 | 3.8014 | 3.2664 | 0.5864 | 4.9156 | −2.0834 | 6.0788 | −2.4626 | 0.8065 | −2.4626 | 0.8065 | 3 | −2.4626 | 0.8065 | 0.5864 | 4.9156 | −2.0834 | 6.0788 | 3.0902 | 9.5106 | −2.4626 | 0.8065 | 2 | −2.4626 | 0.8065 | 0.5864 | 4.9156 | −2.0834 | 6.0788 | −3.0902 | 9.5106 | −2.4626 | 0.8065 | 2 | −2.4626 | 0.8065 | 0.5864 | 4.9156 | −2.0834 | 6.0788 | −8.0902 | 5.8779 | −2.4626 | 0.8065 | 2 |
|
|