Research Article

A Hybrid Harmony Search Algorithm with Distribution Estimation for Solving the 0-1 Knapsack Problem

Table 3

Comparison with harmony search algorithm variants for low dimensional instances.

InstanceMeasureHHSEDABHSDBHSNGHSABHS

KP1Best130130130130130
Median130130130130130
Worst130130130130130
Mean130130130130130
Std00000

KP2Best107107107107107
Median107107107107107
Worst107105107107107
Mean107106.93107107107
Std00.3651000

KP3Best2323232323
Median2323232323
Worst2323232323
Mean2323232323
Std00000

KP4Best3535353535
Median3535353535
Worst3535353535
Mean3535353535
Std00000

KP5Best10251025101710251025
Median102510259611012.501025
Worst1025101991310251025
Mean10251024.80963.731004.801025
Std01.1027.0922.890

KP6Best5252525252
Median5252525252
Worst5252525152
Mean52525251.9352
Std0000.25370

KP7Best295295295295295
Median295295295295295
Worst295293295287295
Mean295294.7295293.87295
Std00.651302.31540

KP8Best10241024101010241024
Median1024102496010161024
Worst102410189209401024
Mean10241023.4959.87999.871024
Std01.830822.4128.110

KP9Best481.07481.07481.07481.07481.07
Median481.07481.07481.16481.07481.07
Worst481.07481.07437.93481.01481.07
Mean481.07481.07469.13481.50481.07
Std0010.6126.190

KP10Best97679767976497679767
Median97679767975897649767
Worst97679763975297559767
Mean97679766.79758.19763.69767
Std00.87693.203.46010