Research Article

A Hybrid Harmony Search Algorithm with Distribution Estimation for Solving the 0-1 Knapsack Problem

Table 4

Comparison with nonharmony search algorithm variants for low dimensional instances.

InstanceMeasureHHSEDAGAPSOBFPABABC-DE

KP1Best130130130130130
Median130130130130130
Worst130130130130130
Mean130130130130130
Std00000

KP2Best107107107107107
Median107107107107107
Worst107107107107107
Mean107107107107107
Std00000

KP3Best23NANA2323
Median23NANA2323
Worst23NANA2323
Mean23NANA2323
Std0NANA00

KP4Best35NANA3535
Median35NANA3535
Worst35NANA3535
Mean35NANA3535
Std0NANA00

KP5Best10251025102510251025
Median1025102510259951025
Worst1025102510259221025
Mean102510251025989.771025
Std00028.980

KP6Best5252525252
Median5252525252
Worst5252525252
Mean5252525252
Std00000

KP7Best295295295295295
Median295295295295295
Worst295295295295295
Mean295295295295295
Std00000

KP8Best10241024102410241024
Median10241024102410131024
Worst1024102410249221024
Mean1024102410241003.11024
Std00024.350

KP9Best481.07481.07481.07481.07481.07
Median481.07481.07481.07481.07481.07
Worst481.07481.07481.07481.07481.07
Mean481.07481.07481.07481.07481.07
Std00000

KP10Best9767NANA97679767
Median9767NANA97659767
Worst9767NANA97619767
Mean9767NANA9764.79767
Std0NANA1.82570