Research Article
Research into an Image Inpainting Algorithm via Multilevel Attention Progression Mechanism
Table 2
Quantitative comparisons on CelebA-HQ, Facade, and Places2.
| Dataset | Mask rate | PSNR | SSIM | Mean L1 loss | CA | MC | Ours | CA | MC | Ours | CA | MC | Ours |
| CelebA-HQ | 10%–20% | 26.16 | 29.61 | 31.33 | 0.9011 | 0.9330 | 0.9450 | 0.0380 | 0.0220 | 0.0182 | 20%–30% | 23.03 | 26.52 | 28.33 | 0.8351 | 0.8887 | 0.9082 | 0.0660 | 0.0378 | 0.0312 | 30%–40% | 21.62 | 24.92 | 26.93 | 0.7860 | 0.8552 | 0.8823 | 0.0872 | 0.0510 | 0.0402 | 40%–50% | 20.21 | 23.05 | 25.43 | 0.7255 | 0.8091 | 0.8492 | 0.1152 | 0.0692 | 0.0523 |
| Facade | 10%–20% | 25.91 | 27.02 | 28.25 | 0.8975 | 0.9121 | 0.9265 | 0.0390 | 0.0320 | 0.0282 | 20%–30% | 25.31 | 24.48 | 25.32 | 0.8702 | 0.8575 | 0.8715 | 0.0645 | 0.0522 | 0.0472 | 30%–40% | 21.98 | 23.20 | 24.51 | 0.7802 | 0.8152 | 0.8415 | 0.0842 | 0.0682 | 0.0592 | 40%–50% | 20.88 | 21.91 | 23.31 | 0.7291 | 0.7702 | 0.8032 | 0.1060 | 0.0869 | 0.0742 |
| Places2 | 10%–20% | 22.48 | 27.35 | 27.67 | 0.8672 | 0.9102 | 0.9121 | 0.0592 | 0.0312 | 0.0292 | 20%–30% | 19.95 | 24.48 | 25.02 | 0.7862 | 0.8542 | 0.8570 | 0.0971 | 0.0512 | 0.0483 | 30%–40% | 18.56 | 22.70 | 23.40 | 0.7240 | 0.8002 | 0.8050 | 0.1312 | 0.0715 | 0.0660 | 40%–50% | 17.52 | 21.40 | 22.28 | 0.6588 | 0.7551 | 0.7652 | 0.1592 | 0.0892 | 0.0812 |
|
|