Research Article
A Prediction Network for Hydraulic Support Pressure Based on Multitimescale Feature Extraction
Table 3
Errors in the prediction results of each model.
| Model | Hydraulic support no. 25 | Hydraulic support no. 45 | Hydraulic support no. 65 | Hydraulic support no. 85 | RMSE (kN) | MAE (kN) | RMSE (kN) | MAE (kN) | RMSE (kN) | MAE (kN) | RMSE (kN) | MAE (kN) |
| Ours | 408.63 | 255.24 | 509.74 | 371.21 | 576.10 | 422.14 | 564.88 | 381.38 | GRU | 416.98 | 259.94 | 600.49 | 411.05 | 602.35 | 436.61 | 582.89 | 390.02 | ANN-GA | 523.89 | 299.35 | 616.99 | 432.32 | 720.14 | 504.18 | 767.98 | 503.39 | TCN | 592.73 | 360.21 | 643.98 | 499.22 | 812.22 | 571.66 | 663.33 | 428.58 | DNN-BTF | 436.41 | 272.93 | 546.67 | 373.81 | 659.62 | 458.23 | 608.07 | 395.71 | LSTM | | | | | | | | | +SVM | 1994.68 | 571.24 | 2594.39 | 690.22 | 2749.47 | 696.74 | 2587.59 | 663.45 |
|
|
The bold values are intended to mark the values with the smallest errors in the comparison experiments.
|