Research Article

Hybrid Model for Method for Short-Term Traffic Flow Prediction Based on Secondary Decomposition Technique and ELM

Table 3

The MAE value of the involved models by cross-validation strategy.

IterationsARIMADBNELMModel1Model2Model3Proposed

14.06174.12374.01082.68180.72690.67290.6246
24.06184.18543.98122.69020.61570.66320.6973
34.06174.10453.94012.62290.59790.66900.6107
44.05944.12064.02622.66910.64020.66960.6127
54.04744.13044.00892.67420.78390.66210.6254
64.06174.08534.04542.74290.62920.66950.6451
74.05204.11804.02592.63350.58740.67080.6325
84.06184.47033.98192.71340.60900.65980.6675
94.04544.24523.97662.69520.69740.66900.6498
104.06184.16363.98502.67800.62510.66170.6634
114.06164.14554.02772.68680.79100.67060.6036
124.06184.14594.04562.69190.64160.66510.6775
134.06134.15204.01692.58570.59780.66280.5886
144.06484.12534.09062.72620.59480.68260.7869
154.05944.10194.03712.69310.66420.64940.5967
164.06144.19133.98692.69640.63780.66130.5902
174.04624.14143.98152.63490.68350.65960.6482
184.06174.11694.03212.67550.66520.66050.6534
194.06164.13294.02482.71890.71660.65750.6020
204.06164.17003.98752.68620.63630.65770.7142
Average4.05884.15854.01062.67980.65710.66470.6445