Research Article

Integrating Feature Engineering with Deep Learning to Conduct Diagnostic and Predictive Analytics for Turbofan Engines

Table 1

Comparison between this research and past studies.

Feature engineeringModel/regressorRMSE/MAE

This studySR, MARS, RF, XGB, PCA, SIRPCA + RF17.58/12.36
PCA + CNN17.6/12.45

Raid et al. [12]MLR19.76
BPN18.59
Le son et al. [13]PCAWiener process modeling28.6

Lim et al. [14]PCA, KPCA, K meansDNN15.6
PCA + DNN15.8
KPCA + DNN15.75
K means + DNN15.16

Sateesh Babu et al. [15]CAEDNN37.56
SVM20.96
RVR23.8
CNN18.45

Mathew et al. [6]KNN30.79
CART28.48
AB28.82
GB27.45
RF24.95
DNN29.62
SVM48.17

Li et al. [16]CAEDNN13.56
RNN13.44
LSTM13.52
DCNN12.61

Li et al. [17]LSTM-CNN11.96

Yurek et al. [11]Chi-square, mutual information, correlation, Fisher’s scoreMLR34.67
GB16.89
RF13.63

Zhang et al. [9]Step differentialCNN13.59
CNN-XGB12.61

Deng et al. [8]Long-term differential techniqueCategorical boosting15.8
DNN17.3
CART26.1
RF18.2
AB24.5
GB17.7

Li et al. [10]CAEMultiscale CNN11.44

Remadna et al. [3]CAERNN19.51
LSTM19.68
BDLSTM18.59
CNN-BDLSTM10.74

Chen et al. [18]Correlation, consistencySVM24.61
LSTM20.16
SVM-LSTM10.11

Kang et al. [19]PCAMLR25.85
PCA + MLR23.62
PCA + DNN22.56
PCA + RF26.48
PCA + SVM28.28

Xiang et al. [20]Multicellular LSTM14.53
Li et al. [21]Deep multiscale feature fusion networkCNN-GRU12.18