Research Article
Integrating Feature Engineering with Deep Learning to Conduct Diagnostic and Predictive Analytics for Turbofan Engines
Table 1
Comparison between this research and past studies.
| | Feature engineering | Model/regressor | RMSE/MAE |
| This study | SR, MARS, RF, XGB, PCA, SIR | PCA + RF | 17.58/12.36 | PCA + CNN | 17.6/12.45 |
| Raid et al. [12] | | MLR | 19.76 | BPN | 18.59 | Le son et al. [13] | PCA | Wiener process modeling | 28.6 |
| Lim et al. [14] | PCA, KPCA, K means | DNN | 15.6 | PCA + DNN | 15.8 | KPCA + DNN | 15.75 | K means + DNN | 15.16 |
| Sateesh Babu et al. [15] | CAE | DNN | 37.56 | SVM | 20.96 | RVR | 23.8 | CNN | 18.45 |
| Mathew et al. [6] | | KNN | 30.79 | CART | 28.48 | AB | 28.82 | GB | 27.45 | RF | 24.95 | DNN | 29.62 | SVM | 48.17 |
| Li et al. [16] | CAE | DNN | 13.56 | RNN | 13.44 | LSTM | 13.52 | DCNN | 12.61 |
| Li et al. [17] | | LSTM-CNN | 11.96 |
| Yurek et al. [11] | Chi-square, mutual information, correlation, Fisher’s score | MLR | 34.67 | GB | 16.89 | RF | 13.63 |
| Zhang et al. [9] | Step differential | CNN | 13.59 | CNN-XGB | 12.61 |
| Deng et al. [8] | Long-term differential technique | Categorical boosting | 15.8 | DNN | 17.3 | CART | 26.1 | RF | 18.2 | AB | 24.5 | GB | 17.7 |
| Li et al. [10] | CAE | Multiscale CNN | 11.44 |
| Remadna et al. [3] | CAE | RNN | 19.51 | LSTM | 19.68 | BDLSTM | 18.59 | CNN-BDLSTM | 10.74 |
| Chen et al. [18] | Correlation, consistency | SVM | 24.61 | LSTM | 20.16 | SVM-LSTM | 10.11 |
| Kang et al. [19] | PCA | MLR | 25.85 | PCA + MLR | 23.62 | PCA + DNN | 22.56 | PCA + RF | 26.48 | PCA + SVM | 28.28 |
| Xiang et al. [20] | | Multicellular LSTM | 14.53 | Li et al. [21] | Deep multiscale feature fusion network | CNN-GRU | 12.18 |
|
|