Research Article
Integrating Feature Engineering with Deep Learning to Conduct Diagnostic and Predictive Analytics for Turbofan Engines
Table 10
Forecasting errors using PCA (principal component analysis).
| Training | RF | XGB | SVM | DNN | RNN | LSTM | GRU | CNN |
| RMSE | 18.68 | 18.47 | 20.13 | 20.44 | 20.25 | 20.74 | 19.9 | 21.47 | MAE | 13.66 | 14.06 | 14.24 | 16.16 | 15.93 | 16.16 | 15.51 | 17.42 | MAAPE | 20.9 | 20.69 | 22.76 | 22.81 | 22.96 | 23.31 | 23.2 | 23.07 | Time (s) | 59 | 6564 | 190 | 989 | 3461 | 9897 | 9344 | 2306 | Testing | RF | XGB | SVM | DNN | RNN | LSTM | GRU | CNN | RMSE | 17.58 | 17.14 | 20.2 | 17.8 | 17.72 | 18.71 | 17.76 | 17.6 | MAE | 12.36 | 12.05 | 14.09 | 12.46 | 12.3 | 13.09 | 12.25 | 12.45 | MAAPE | 20.64 | 19.93 | 23.54 | 19.59 | 19.32 | 20.92 | 19.68 | 19.92 | Time (s) | 0.47 | 3.14 | 2.22 | 0.29 | 0.33 | 0.58 | 0.34 | 0.31 |
|
|