Research Article
Integrating Feature Engineering with Deep Learning to Conduct Diagnostic and Predictive Analytics for Turbofan Engines
Table 11
Forecasting errors using SIR (sliced inverse regression).
| Training | RF | XGB | SVM | DNN | RNN | LSTM | GRU | CNN |
| RMSE | 19.35 | 19.55 | 21.16 | 21.76 | 21.72 | 22.09 | 21.61 | 19.35 | MAE | 14.58 | 15.27 | 14.31 | 17.81 | 17.75 | 18.38 | 17.57 | 14.58 | MAAPE | 23.14 | 23.22 | 23.09 | 26.18 | 26.01 | 26.41 | 25.63 | 23.14 | Testing | RF | XGB | SVM | DNN | RNN | LSTM | GRU | CNN | RMSE | 19.43 | 18.97 | 21.13 | 19.22 | 19.17 | 19.04 | 18.98 | 18.35 | MAE | 13.57 | 13.36 | 14.69 | 14.21 | 14.14 | 14.15 | 14.03 | 13.51 | MAAPE | 23.8 | 23.19 | 24.68 | 24.01 | 24.46 | 23.77 | 23.74 | 22.64 |
|
|