Research Article

Integrating Feature Engineering with Deep Learning to Conduct Diagnostic and Predictive Analytics for Turbofan Engines

Table 5

Forecasting errors using all sensors.

TrainingRFXGBSVMDNNRNNLSTMGRUCNN

RMSE16.4719.219.7320.0720.2719.3219.3619.04
MAE12.131513.2415.3215.6413.7213.8814.2
MAAPE19.5715.1921.2222.3222.4221.2721.9621.45
Time (s)1797197710108233291007896462650
TestingRFXGBSVMDNNRNNLSTMGRUCNN
RMSE18.0517.4720.2719.3219.1219.0718.9819.35
MAE12.9212.4513.9113.3613.1913.213.1313.24
MAAPE22.4420.9722.2120.5520.5220.8420.9820.43
Time (s)1.424.414.340.450.630.780.690.49