Research Article
Integrating Feature Engineering with Deep Learning to Conduct Diagnostic and Predictive Analytics for Turbofan Engines
Table 5
Forecasting errors using all sensors.
| Training | RF | XGB | SVM | DNN | RNN | LSTM | GRU | CNN |
| RMSE | 16.47 | 19.2 | 19.73 | 20.07 | 20.27 | 19.32 | 19.36 | 19.04 | MAE | 12.13 | 15 | 13.24 | 15.32 | 15.64 | 13.72 | 13.88 | 14.2 | MAAPE | 19.57 | 15.19 | 21.22 | 22.32 | 22.42 | 21.27 | 21.96 | 21.45 | Time (s) | 179 | 7197 | 710 | 1082 | 3329 | 10078 | 9646 | 2650 | Testing | RF | XGB | SVM | DNN | RNN | LSTM | GRU | CNN | RMSE | 18.05 | 17.47 | 20.27 | 19.32 | 19.12 | 19.07 | 18.98 | 19.35 | MAE | 12.92 | 12.45 | 13.91 | 13.36 | 13.19 | 13.2 | 13.13 | 13.24 | MAAPE | 22.44 | 20.97 | 22.21 | 20.55 | 20.52 | 20.84 | 20.98 | 20.43 | Time (s) | 1.42 | 4.41 | 4.34 | 0.45 | 0.63 | 0.78 | 0.69 | 0.49 |
|
|