Research Article
Nonlinear Model Order Selection: A GMM Clustering Approach Based on a Genetic Version of EM Algorithm
Table 9
RMSE prediction errors measured by five methods of case 3.
| Ex. 3 RMSE Input order (n) | Output order (m) | 0 | 1 | 2 | 3 | 4 |
| RBF | 0 | — | 0.0913 | 0.0805 | 0.1293 | 0.2905 | 1 | 0.0901 | 0.0900 | 0.0819 | 0.1834 | 0.3411 | 2 | 0.0784 | 0.0803 | 0.0802 | 0.2733 | 0.7444 | 3 | 0.0740 | 0.0815 | 0.1209 | 0.2576 | 0.9637 | 4 | 0.2686 | 0.3621 | 0.4703 | 0.5711 | 0.8461 | SVR | 0 | — | 1.2697 | 0.1179 | 0.1610 | 0.3664 | 1 | 1.7895 | 1.9277 | 0.1525 | 0.1062 | 0.3198 | 2 | 0.5762 | 0.1138 | 0.1055 | 0.1143 | 0.3730 | 3 | 0.1275 | 0.1560 | 0.1303 | 0.1499 | 0.3435 | 4 | 0.3251 | 0.3300 | 0.3320 | 0.2996 | 0.3564 |
| BA-SVR | 0 | — | 0.1826 | 0.1163 | 0.1198 | 0.1441 | 1 | 0.4211 | 0.1435 | 0.1045 | 0.0991 | 0.1021 | 2 | 0.2675 | 0.1021 | 0.0959 | 0.1065 | 0.1152 | 3 | 0.1220 | 0.1325 | 0.1155 | 0.1390 | 0.1707 | 4 | 0.3167 | 0.1156 | 0.1309 | 0.1855 | 0.1893 |
| LM-BP | 0 | — | 1.2396 | 0.0889 | 0.0898 | 0.1068 | 1 | 0.1014 | 0.1111 | 0.0920 | 0.0897 | 0.1247 | 2 | 0.1367 | 0.0904 | 0.0867 | 0.0909 | 0.0901 | 3 | 0.1176 | 0.1066 | 0.0924 | 0.1008 | 0.1179 | 4 | 0.0870 | 0.1014 | 0.0902 | 0.1015 | 0.0935 |
| ELM | 0 | — | 0.0414 | 0.0256 | 0.0244 | 0.0271 | 1 | 0.0128 | 0.0156 | 0.0216 | 0.0254 | 0.0231 | 2 | 0.0123 | 0.0227 | 0.0196 | 0.0380 | 0.0291 | 3 | 0.0176 | 0.0230 | 0.0197 | 0.0241 | 0.0223 | 4 | 0.0353 | 0.0279 | 0.0247 | 0.0177 | 0.0277 |
|
|