Research Article

Artificial Neural Network on Tool Condition Monitoring in Hard Turning of AISI4140 Steel Using Carbide Tool

Table 4

Statistical parameters for different algorithm.

Learning algorithmNumber of neuronsTraining dataTesting data
MSER2MEPMSER2MEP

SCG30.000570.989811.316530.002560.960762.94666
SCG40.000460.989861.029860.004810.959563.08031
SCG50.00030.989940.933640.004850.959514.01234
SCG60.00040.989891.010.001870.961142.26038
SCG70.000290.989950.787590.003020.960542.94155
SCG80.000150.990020.576210.003480.960253.13816
SCG90.000150.990020.637410.003720.960163.41839
SCG100.000150.990020.607590.004890.959482.93078
SCG110.000150.990020.587050.004910.959493.04516
SCG120.000150.990020.567340.0060.958814.53562
SCG130.000150.990020.534120.004230.959873.48091
LM30.000280.989960.90390.005090.959433.39502
LM40.000230.989980.755630.003730.960133.04203
LM50.000150.990020.600550.002710.960642.88465
LM60.000150.990020.575890.003040.960512.45096
LM70.000150.990020.579040.002370.960872.63842
LM80.000180.990010.589890.001860.961122.08327
LM90.000150.990030.521930.004320.959842.93576
LM100.000130.990030.575410.004440.969442.97762
LM110.000140.990030.545730.003570.960553.2325
LM120.000150.990030.587850.003050.959743.13017
LM130.000150.990020.604790.002980.960223.03257
BFGS30.000810.989691.36050.002350.960852.9088
BFGS40.000150.990020.589160.003980.963.3963
BFGS50.000510.989841.058250.004270.959823.24591
BFGS60.000150.990020.598050.004140.959953.49553
BFGS70.000170.990010.593260.002390.960862.63266
BFGS80.000150.990020.589630.002060.9612.39612
BFGS90.000160.990020.54090.002990.960533.20363
BFGS100.000150.990020.623930.005040.960053.77635
BFGS110.000150.990020.58640.003930.960142.98896
BFGS120.000150.990020.582890.003730.959423.18478
BFGS130.000150.990020.548330.003660.960193.00182
RP30.001250.989461.796140.002790.960652.91004
RP40.00060.98981.247920.004110.959933.29755
RP50.000570.989811.230210.003120.960453.05601
RP60.000550.989821.265270.00330.960382.95563
RP70.000520.989841.224640.003590.960233.0753
RP80.000420.989891.054560.002330.960882.63968
RP90.00030.989940.910320.004010.960473.56107
RP100.000270.989960.757310.003080.960213.16648
RP110.000320.989930.935770.005010.959474.04232
RP120.000370.989910.850980.004280.959983.39852
RP130.000420.989891.002890.003620.959833.50382
CGP30.000980.98961.64270.003670.960163.39345
CGP40.000870.989651.665090.003220.960412.9405
CGP50.000970.98961.56360.002920.960562.81855
CGP60.00060.989791.216690.004330.959813.25599
CGP70.000710.989741.375330.003120.960463.21892
CGP80.000630.989781.372410.003110.961063.50654
CGP90.000420.989891.121820.002020.960052.81571
CGP100.000420.989891.056840.004680.960473.68279
CGP110.000470.989861.078590.003880.960063.24279
CGP130.000570.989811.255980.004530.959613.80826
CGP90.000580.98981.269650.003920.959692.97969