Artificial Neural Network on Tool Condition Monitoring in Hard Turning of AISI4140 Steel Using Carbide Tool
Table 5
Optimal results for different algorithms.
Learning algorithm
Network structure
Training data
Testing data
MSE
R2
MEP
MSE
R2
MEP
SCG
5–10–1
0.000152959
0.990022
0.607591
0.004894
0.959475
2.930778
LM
5–10–1
0.000133152
0.996602
0.575407
0.004443
0.969437
2.977617
BFGS
5–10–1
0.000153264
0.990021
0.623932
0.005043
0.960051
3.776345
RP
5–10–1
0.000266462
0.989964
0.757306
0.003076
0.960214
3.166478
CGP
5–10–1
0.000417316
0.989886
1.056837
0.004681
0.960468
3.682791
Among all the learning algorithm given in the table 5, LM algorithm provides the least mean square error for both the training data and the testing data.