Research Article
Artificial Neural Network on Tool Condition Monitoring in Hard Turning of AISI4140 Steel Using Carbide Tool
Table 6
Weights and biases between the input and hidden layers.
| i | Ei = () + (ap) + (f) + (Fr) + (L) + θ | | | | | | θ |
| 1 | 7.3428 | −5.3242 | 4.1512 | 0.3261 | 2.5408 | −4.5807 | 2 | 6.1143 | 0.2539 | 18.9248 | 10.1580 | 1.9234 | 3.4457 | 3 | −7.3623 | −2.354 | 9.7067 | −1.9377 | −1.2277 | −3.4140 | 4 | 10.3312 | −0.0336 | −0.0338 | 5.2923 | 3.6745 | −8.4789 | 5 | −5.3057 | 4.2288 | −0.8456 | 7.9866 | 2.7899 | 0.6754 | 6 | 11.6888 | 7.7987 | 0.1363 | −1.9781 | −4.3452 | −2.2241 | 7 | 6.2586 | 1.111 | −10.9194 | −5.3945 | 3.8769 | −1.2896 | 8 | 12.5535 | −4.98 | 0.6096 | −17.4612 | −3.8723 | 11.0522 | 9 | 5.8727 | −0.2758 | 7.0786 | 4.9682 | 4.2301 | 2.6555 | 10 | −6.3757 | −3.0314 | −19.2195 | 11.4638 | −1.0789 | 1.9935 |
|
|