Research Article

Research on Global Path Planning of Robot Based on Ant Colony Algorithm and Gaussian Sampling

Table 11

Statistical Results of PSO, GA and S-IACO algorithms in Figure 8(a).

Ten simulation statistics

30 × 30 environment map (Figure 8(a))Iterations
Algorithm12345678910Average
PSO4952485049474950495149
GA5355515254535354545153
S-IACOA3637323536353635333435
Path length (m)
PSO52.6552.6552.6552.6552.6552.6552.6552.6552.6552.6552.65
GA51.8751.8751.8751.8751.8751.8751.8751.8751.8751.8751.87
S-IACOA49.3649.3649.3649.3649.3649.3649.3649.3649.3649.3649.36
Simulation time (s)
PSO10.8710.9510.5711.8310.5211.0811.2910.6610.5910.6211.89
GA11.8912.8612.5512.9812.3512.7312.6512.6212.5312.4812.56
S-IACOA9.229.238.949.029.258.928.879.118.999.139.10