Research Article

Research on Global Path Planning of Robot Based on Ant Colony Algorithm and Gaussian Sampling

Table 12

Statistical Results of PSO, GA and S-IACO algorithms in Figure 8(b).

Ten simulation statistics

30 × 30 environment map (Figure 8(b))Iterations
Algorithm12345678910Average
PSO4850504748504647494948
GA5252535355525253535253
S-IACOA3635323337343534353735
Path length (m)
PSO52.7952.7952.7952.7952.7952.7952.7952.7952.7952.7952.79
GA54.8754.8754.8754.8754.8754.8754.8754.8754.8754.8754.87
S-IACOA49.3649.3649.3649.3649.3649.3649.3649.3649.3649.3649.36
Simulation time (s)
PSO12.6711.9812.2711.8312.0211.7812.1912.3611.8411.7212.07
GA12.8413.4813.6113.8813.9212.9512.8814.0713.1213.5413.43
S-IACOA9.529.549.949.229.459.569.609.429.379.489.51