Research Article

Research on Global Path Planning of Robot Based on Ant Colony Algorithm and Gaussian Sampling

Table 6

Simulation results of different environments.

Map environmentAlgorithmPath length (m)IterationsSimulation time (s)

20 × 20 environment map (Figure 7(a))OMV-ACO29.82234.98
IACO29.82305.55
T-ACO29.82348.74
S-IACO29.82133.58

20 × 20 environment map (Figure 7(b))OMV-ACO30.37265.28
IACO30.37194.48
T-ACO30.37307.66
S-IACO30.37113.52

20 × 20 environment map (Figure 7(c))OMV-ACO30.40184.82
IACO30.40134.09
T-ACO30.40276.54
S-IACO30.40113.66

30 × 30 environment map (Figure 5(a))OMV-ACO51.934410.60
IACO49.365111.20
T-ACO
S-IACO49.36349.10

30 × 30 environment map (Figure 5(b))OMV-ACO50.484710.80
IACO51.554710.57
T-ACO
S-IACO49.36359.51

30 × 30 environment map (Figure 5(c))OMV-ACO49.134410.90
IACO44.534611.58
T-ACO
S-IACO44.53399.70