Research Article
Prediction of Flank Wear during Turning of EN8 Steel with Cutting Force Signals Using a Deep Learning Approach
Table 3
Prediction accuracy of different membership functions.
| S. no. | Membership function-ANFIS structure | Optimization method | Training error (mm) | Testing error (mm) |
| 1 | Gauss MF | BPNN | 0.18915 | 1.9795 | 2 | Gauss MF | Hybrid | 0.000134 | 0.0704 | 3 | TRAF MF | Hybrid | 0.000966 | 0.0849 | 4 | Gauss 2MF | Hybrid | 0.000164 | 0.0783 | 5 | PRINMF | Hybrid | 0.000166 | 0.0788 | 6 | DSIGMF | Hybrid | 0.000165 | 0.0784 | 7 | PSIGMF | Hybrid | 0.000407 | 0.0783 | 8 | Subtractive clustering | Hybrid | 0.002239 | 0.0929 |
|
|