| Stable point | Eigenvalue of Jacobian matrix | Stability conclusion | Condition | λ1 | λ2 | λ3 | Real part |
| E1 (0, 0, 0) | −Bt + Ct + Mt | Csl − Csh + Cs + Bt | Fs + + Ft − | (−, −, +) | Unstable point | — | E2 (1, 0, 0) | Ct | Ft − − Ms | Csh − Csl − Cs − Bt | (+, +, ) | Unstable point | — | E3 (0, 1, 0) | Csl−Csh + Cs + Rs | Bt − Ct − Mt | Fs − Mt − | (+, +, ) | Unstable point | — | E4 (0, 0, 1) | Csl − Csh + Cs + Bt + Fs + Ms | Mt + Ft + Ct − Bt | −Fs − − Ft + | (−, −, −) | ESS | ① | E5 (1, 1, 0) | −Csl + Csh − Cs − Rs | −Ct | −Ms − Mt − | (−, −, −) | ESS | — | E6 (1, 0, 1) | −Csl + Csh − Cs − Bt − Fs − Ms | Mt + Ft + Ct | Ms − Ft + | (, +, ) | Unstable point | — | E7 (0, 1, 1) | Csl − Csh + Cs + Bt + Fs + Ms | Bt − Ct − 2Mt − Ft | Mt − Fs + | (+, , ) | Unstable point | — | E8 (1, 1, 1) | Ms + Mt + | −Mt − Ft − Ct | −Csl + Csh − Cs − Rs − Fs − Ms | (−, −, +) | Unstable point | — | E9 (0, y1, z1) | | (−, 0, 0) | Cannot be determined | ② | E10 (x1, 0, z2) | | (−, 0, 0) | Cannot be determined | ③ | E12 (x2, y2, 0) | | (, +, −) | Unstable point | ④ | E13 (x3, y3, 1) | | (, +, −) | Unstable point | ⑤ |
|
|
Notes: ω indicates the expression is too long, indicates that the symbol is uncertain, and x1, x2, x3, y1, y2, y3, z1, z2, respectively, indicate the coordinates of the corresponding balance point. If they do not meet the requirements, the balance point is meaningless or unstable. ① Csl − Csh + Cs + Bt + Fst + Ms < 0, Mt + Ft + Ct − Bt < 0; ② a1 < 0, Fs − < Mt, Bt − Ct − Ft − Mt < 0; ③ a2 < 0, Ft − < Ms, Csh − Csl − Cs − Bt − Fs − Ms < 0, − < Ms, Csh − Csl − Cs − Bt − Fs − Ms < 0; ④ Bt − Ct > 0, Csh − Csl − Cs − Bt > 0; ⑤ Bt − Mt − Ft − Ct > 0, Csh − Csl − Cs − Bt > 0. |