Research Article

Multiagent Game of Intelligent Building Detection and Its Harm Rumor Analysis

Table 2

Stability analysis of equilibrium point.

Stable pointEigenvalue of Jacobian matrixStability conclusionCondition
λ1λ2λ3Real part

E1 (0, 0, 0)Bt+Ct+MtCsl − Csh+Cs+BtFs++Ft  − (−, −, +)Unstable point
E2 (1, 0, 0)CtFt −  − MsCsh − Csl − Cs − Bt(+, +, )Unstable point
E3 (0, 1, 0)CslCsh+Cs+RsBt − Ct − MtFs − Mt − (+, +, )Unstable point
E4 (0, 0, 1)Csl − Csh+Cs+Bt+Fs+MsMt+Ft+Ct − BtFs −  − Ft+(−, −, −)ESS
E5 (1, 1, 0)Csl+CshCsRsCtMs − Mt − (−, −, −)ESS
E6 (1, 0, 1)Csl+Csh − CsBtFsMsMt+Ft+CtMs − Ft+(, +, )Unstable point
E7 (0, 1, 1)Csl − Csh+Cs+Bt+Fs+MsBt − Ct − 2Mt − FtMt − Fs+(+, , )Unstable point
E8 (1, 1, 1)Ms+Mt+Mt − Ft − CtCsl +CshCsRsFsMs(−, −, +)Unstable point
E9 (0, y1, z1)(−, 0, 0)Cannot be determined
E10 (x1, 0, z2)(−, 0, 0)Cannot be determined
E12 (x2, y2, 0)(, +, −)Unstable point
E13 (x3, y3, 1)(, +, −)Unstable point

Notes: ω indicates the expression is too long, indicates that the symbol is uncertain, and x1, x2, x3, y1, y2, y3, z1, z2, respectively, indicate the coordinates of the corresponding balance point. If they do not meet the requirements, the balance point is meaningless or unstable. ① CslCsh + Cs + Bt + Fst + Ms < 0, Mt + Ft + CtBt < 0; ② a1 < 0, Fs < Mt, BtCtFtMt < 0; ③ a2 < 0, Ft < Ms, CshCslCsBtFsMs < 0, < Ms, CshCslCsBtFsMs < 0; ④ BtCt > 0, CshCslCsBt > 0; ⑤ BtMtFtCt > 0, CshCslCsBt > 0.