Research Article
Fine-Grained Point Cloud Semantic Segmentation of Complex Railway Bridge Scenes from UAVs Using Improved DGCNN
Table 4
Segmentation results of different networks in scene (b).
| Methods | Test mIoU (%) | Test bACC (%) | Parameters size (MB) |
| PointNet++ [23] | 88.25 | 93.17 | 7.18 | DGCNN [25] | 88.96 | 93.67 | 2.45 | KPConv [20] | 89.36 | 94.04 | 14.10 | Point transformer [35] | 90.92 | 95.53 | 7.80 | Swin3D-L [36] | 83.87 | 89.68 | 60.75 |
| Improved DGCNN | 90.64 | 95.31 | 2.12 |
|
|