Research Article

Fine-Grained Point Cloud Semantic Segmentation of Complex Railway Bridge Scenes from UAVs Using Improved DGCNN

Table 5

Results of segmentation of three scenes in different areas.

ScenesTest areaIoU (%)mIoU (%)bACC (%)
CableClusterGuardrailMastProtective wallRailTrack bed

(a)199.4699.5699.9297.8899.0897.7699.2198.9899.51
299.6199.7199.9698.4399.5198.3799.3299.2799.68
399.4099.8299.9997.8699.6098.5399.5299.2499.68
499.1099.5899.9597.9099.4299.1099.4599.2199.63
Mean99.3999.6699.8898.0299.4098.4499.3899.1899.63

(b)198.7490.2797.8091.0792.9283.8086.7791.6296.73
298.4488.3192.9782.8387.6390.0495.15
398.7887.8497.1290.2091.7082.0586.8290.6495.31
498.5688.4992.4284.8085.8690.0395.07
598.7789.6398.6290.4191.9683.8487.1891.4996.66
Mean98.6688.9197.8591.4192.1983.4686.8590.7695.78

(c)197.5084.8689.4574.2986.5392.11
296.9583.4588.2375.4582.2085.2691.05
397.0483.3988.9175.8486.3091.77
497.8482.8494.4689.5985.9972.5487.2192.64
596.3881.5593.8086.7683.9573.5382.6485.5291.26
683.7096.9588.7078.8472.9484.2390.87
Mean97.1483.3095.0788.6182.9374.1082.4285.8491.62