Research Article
Structural Vibration Data Anomaly Detection Based on Multiple Feature Information Using CNN-LSTM Model
Table 2
Description of parameters of the LSTM-CNN model.
| | Network layer | Parameter setting | Activation function | Output size |
| | Input layer | — | — | (None, 300, 2) | | 1D-convolutional layer | Size of convolution kernel: 3 × 2 Number of channels: 16 Stride: 1 | ReLU | (None, 298, 16) | | Max pooling layer | Pooling window: 2 × 1 Stride: 2 | — | (None, 149, 16) | | Reshape layer | — | — | (None, 2384) | | LSTM layer | Number of nerve cell: 100 | Tanh | (None, 100) | | Fully connected layer | — | — | (None, 100) | | Output layer | — | Softmax | (None, 5) |
|
|