Research Article
Elastomagnetic Sensor-Based Long-Term Tension Monitoring of Prestressed Bridge Member with Temperature Compensation
Table 3
Cross-validation and test results using full-scale datasets and derived hyperparameters.
| Category | Extra trees (ET) | Random forest (RF) | Gradient boosting regression (GBR) | MAE (ton) | R2 | MAE (ton) | R2 | MAE (ton) | R2 |
| Sensor 1 | Validation | 0.0026 | 0.9921 | 0.0043 | 0.9793 | 0.0094 | 0.9838 | Test | 0.0006 | 0.9992 | 0.0028 | 0.9867 | 0.0105 | 0.9570 |
| Sensor 2 | Validation | 0.0025 | 0.9844 | 0.0032 | 0.9772 | 0.0085 | 0.9825 | Test | 0.0065 | 0.9373 | 0.0089 | 0.8908 | 0.0123 | 0.9371 |
| Tuned hyperparameter | Max_features: 1.0, min_samples_leaf: 1, min_samples_split: 2, n_estimators: 100 | Bootstrap: true, max_features: 1.0, min_samples_leaf: 1, min_samples_split: 2, n_estimators: 100 | Max_features: 1.0, min_impurity decreases: 1e − 09, min_samples_leaf: 1, min_samples_split: 10, n_estimators: 300 |
|
|