Research Article
Self-Tuning Inference Model for Settlement in Shield Tunneling: A Case Study of the Taipei Mass Rapid Transit System’s Songshan Line
Table 8
Comparison with data balanced by PDDBS.
| Algorithm | Training | Testing | MAPE (%) | RMSE | MAE | R | RI | Rank | MAPE (%) | RMSE | MAE | R | RI | Rank |
| Original dataset | BPNN | 10.75 | 2.2276 | 1.4593 | 0.9023 | 0.7201 | 4 | 12.16 | 2.3635 | 1.6551 | 0.8874 | 0.7844 | 3 | LSSVM | 8.49 | 1.9266 | 1.3073 | 0.9648 | 0.8250 | 2 | 10.12 | 2.2621 | 1.5159 | 0.9442 | 0.8322 | 2 | ELSIM | 8.49 | 1.9088 | 1.3308 | 0.9264 | 0.7885 | 3 | 11.59 | 5.5700 | 1.8920 | 0.7807 | 0.6331 | 4 | SVM | 25.84 | 6.7033 | 4.8161 | 0.8136 | 0.1090 | 5 | 32.51 | 7.1774 | 5.6747 | 0.1400 | 0.0000 | 5 | SOS-LSSVM | 5.00 | 1.2579 | 0.8031 | 0.9811 | 0.9188 | 1 | 7.63 | 2.0467 | 1.2002 | 0.9567 | 0.8828 | 1 |
| PDDBS oversampling | BPNN | 6.13 | 1.6970 | 1.0244 | 0.9823 | 0.8805 | 4 | 6.68 | 1.8302 | 1.1335 | 0.9768 | 0.9160 | 2 | LSSVM | 6.24 | 1.5540 | 1.0117 | 0.9867 | 0.8936 | 3 | 6.88 | 1.9755 | 1.2018 | 0.9776 | 0.9099 | 3 | ELSIM | 3.43 | 0.8927 | 0.6062 | 0.9890 | 0.9431 | 2 | 5.38 | 1.9476 | 1.1413 | 0.8242 | 0.8652 | 4 | SVM | 54.29 | 10.0046 | 7.2173 | 0.9045 | 0.0521 | 5 | 59.24 | 10.7365 | 8.1600 | 0.2768 | 0.0000 | 5 | SOS-LSSVM | 3.00 | 0.7852 | 0.5296 | 0.9963 | 0.9664 | 1 | 4.82 | 1.5374 | 0.8405 | 0.9859 | 0.9438 | 1 |
| PDDBS median sampling | BPNN | 5.29 | 1.6314 | 1.0664 | 0.9797 | 0.8795 | 4 | 5.07 | 2.0343 | 1.1767 | 0.9590 | 0.8897 | 4 | LSSVM | 4.77 | 1.5050 | 0.9884 | 0.9833 | 0.8937 | 3 | 5.47 | 1.8360 | 1.1282 | 0.9746 | 0.8993 | 3 | ELSIM | 3.80 | 1.3211 | 0.8187 | 0.9728 | 0.9015 | 2 | 4.65 | 1.7172 | 0.9844 | 0.9566 | 0.9069 | 2 | SVM | 40.12 | 8.5787 | 6.0746 | 0.8896 | 0.1407 | 5 | 43.18 | 9.2834 | 6.9853 | 0.1943 | 0.0000 | 5 | SOS-LSSVM | 2.39 | 0.9048 | 0.5243 | 0.9930 | 0.9566 | 1 | 3.66 | 1.3851 | 0.7959 | 0.9856 | 0.9385 | 1 |
|
|