Research Article

Self-Tuning Inference Model for Settlement in Shield Tunneling: A Case Study of the Taipei Mass Rapid Transit System’s Songshan Line

Table 8

Comparison with data balanced by PDDBS.

AlgorithmTrainingTesting
MAPE (%)RMSEMAERRIRankMAPE (%)RMSEMAERRIRank

Original dataset
BPNN10.752.22761.45930.90230.7201412.162.36351.65510.88740.78443
LSSVM8.491.92661.30730.96480.8250210.122.26211.51590.94420.83222
ELSIM8.491.90881.33080.92640.7885311.595.57001.89200.78070.63314
SVM25.846.70334.81610.81360.1090532.517.17745.67470.14000.00005
SOS-LSSVM5.001.25790.80310.98110.918817.632.04671.20020.95670.88281

PDDBS oversampling
BPNN6.131.69701.02440.98230.880546.681.83021.13350.97680.91602
LSSVM6.241.55401.01170.98670.893636.881.97551.20180.97760.90993
ELSIM3.430.89270.60620.98900.943125.381.94761.14130.82420.86524
SVM54.2910.00467.21730.90450.0521559.2410.73658.16000.27680.00005
SOS-LSSVM3.000.78520.52960.99630.966414.821.53740.84050.98590.94381

PDDBS median sampling
BPNN5.291.63141.06640.97970.879545.072.03431.17670.95900.88974
LSSVM4.771.50500.98840.98330.893735.471.83601.12820.97460.89933
ELSIM3.801.32110.81870.97280.901524.651.71720.98440.95660.90692
SVM40.128.57876.07460.88960.1407543.189.28346.98530.19430.00005
SOS-LSSVM2.390.90480.52430.99300.956613.661.38510.79590.98560.93851