Research Article
Self-Tuning Inference Model for Settlement in Shield Tunneling: A Case Study of the Taipei Mass Rapid Transit System’s Songshan Line
Table 9
Comparison with data balanced by SMOTE.
| Algorithm | Training | Testing | MAPE (%) | RMSE | MAE | R | RI | Rank | MAPE (%) | RMSE | MAE | R | RI | Rank |
| Original dataset | BPNN | 10.75 | 2.2276 | 1.4593 | 0.9023 | 0.7201 | 4 | 12.16 | 2.3635 | 1.6551 | 0.8874 | 0.7844 | 3 | LSSVM | 8.49 | 1.9266 | 1.3073 | 0.9648 | 0.8250 | 2 | 10.12 | 2.2621 | 1.5159 | 0.9442 | 0.8322 | 2 | ELSIM | 8.49 | 1.9088 | 1.3308 | 0.9264 | 0.7885 | 3 | 11.59 | 5.5700 | 1.8920 | 0.7807 | 0.6331 | 4 | SVM | 25.84 | 6.7033 | 4.8161 | 0.8136 | 0.1090 | 5 | 32.51 | 7.1774 | 5.6747 | 0.1400 | 0.0000 | 5 | SOS-LSSVM | 5.00 | 1.2579 | 0.8031 | 0.9811 | 0.9188 | 1 | 7.63 | 2.0467 | 1.2002 | 0.9567 | 0.8828 | 1 |
| SMOTE oversampling | BPNN | 5.53 | 1.5974 | 0.9583 | 0.9845 | 0.9175 | 4 | 5.84 | 1.7868 | 1.0125 | 0.9809 | 0.9691 | 2 | LSSVM | 5.32 | 1.4877 | 0.8906 | 0.9873 | 0.9317 | 3 | 6.29 | 1.8163 | 1.0116 | 0.9806 | 0.9662 | 3 | ELSIM | 3.49 | 1.1910 | 0.6035 | 0.9850 | 0.9529 | 2 | 5.24 | 2.9411 | 1.0921 | 0.8949 | 0.9078 | 4 | SVM | 29.71 | 5.6932 | 4.1081 | 0.8697 | 0.0000 | 5 | 32.81 | 6.4231 | 4.8021 | 0.8062 | 0.0000 | 5 | SOS-LSSVM | 2.61 | 0.8461 | 0.4467 | 0.9950 | 1.0000 | 1 | 4.15 | 1.4436 | 0.6654 | 0.9879 | 1.0000 | 1 |
| SMOTE median sampling | BPNN | 4.11 | 1.4605 | 0.8513 | 0.9823 | 0.8995 | 3 | 4.39 | 1.5473 | 0.9093 | 0.9802 | 0.9540 | 2 | LSSVM | 4.50 | 1.4727 | 0.9336 | 0.9830 | 0.8907 | 4 | 5.09 | 1.7091 | 1.0575 | 0.9759 | 0.9293 | 3 | ELSIM | 3.44 | 1.2499 | 0.7272 | 0.9956 | 0.9469 | 2 | 4.69 | 1.9611 | 0.9669 | 0.9322 | 0.8862 | 4 | SVM | 25.60 | 6.2592 | 4.3272 | 0.8483 | 0.0000 | 5 | 34.69 | 6.7349 | 5.3017 | 0.7116 | 0.0000 | 5 | SOS-LSSVM | 2.09 | 0.8341 | 0.4202 | 0.9943 | 0.9977 | 1 | 3.09 | 1.2293 | 0.6277 | 0.9871 | 1.0000 | 1 |
|
|