Research Article

Self-Tuning Inference Model for Settlement in Shield Tunneling: A Case Study of the Taipei Mass Rapid Transit System’s Songshan Line

Table 9

Comparison with data balanced by SMOTE.

AlgorithmTrainingTesting
MAPE (%)RMSEMAERRIRankMAPE (%)RMSEMAERRIRank

Original dataset
BPNN10.752.22761.45930.90230.7201412.162.36351.65510.88740.78443
LSSVM8.491.92661.30730.96480.8250210.122.26211.51590.94420.83222
ELSIM8.491.90881.33080.92640.7885311.595.57001.89200.78070.63314
SVM25.846.70334.81610.81360.1090532.517.17745.67470.14000.00005
SOS-LSSVM5.001.25790.80310.98110.918817.632.04671.20020.95670.88281

SMOTE oversampling
BPNN5.531.59740.95830.98450.917545.841.78681.01250.98090.96912
LSSVM5.321.48770.89060.98730.931736.291.81631.01160.98060.96623
ELSIM3.491.19100.60350.98500.952925.242.94111.09210.89490.90784
SVM29.715.69324.10810.86970.0000532.816.42314.80210.80620.00005
SOS-LSSVM2.610.84610.44670.99501.000014.151.44360.66540.98791.00001

SMOTE median sampling
BPNN4.111.46050.85130.98230.899534.391.54730.90930.98020.95402
LSSVM4.501.47270.93360.98300.890745.091.70911.05750.97590.92933
ELSIM3.441.24990.72720.99560.946924.691.96110.96690.93220.88624
SVM25.606.25924.32720.84830.0000534.696.73495.30170.71160.00005
SOS-LSSVM2.090.83410.42020.99430.997713.091.22930.62770.98711.00001