Research Article
Smart Aggregate-Based Concrete Stress Monitoring via 1D CNN Deep Learning of Raw Impedance Signals
Table 5
Specifications of the four 1D CNN architectures (M1 − M4).
| | Layers | Type | Depth | Filter | Stride |
| | Model M1 | | 1 | Conv | 4 | 1 × 6 | 1 | | 2 | ReLU | — | — | — | | 3 | Maxpool | — | 1 × 2 | 2 | | 4 | Conv | 4 | 1 × 4 | 1 | | 5 | ReLU | — | — | — | | 6 | Maxpool | — | 1 × 2 | 2 | | 7 | Conv | 8 | 1 × 5 | 1 | | 8 | ReLU | — | — | — | | 9 | Maxpool | — | 1 × 2 | 2 | | 10 | Fc1 | 48 | — | — | | 11 | Fc2 | 32 | — | — | | 12 | Fc3 | 1 | — | — | | 13 | Regression | — | — | — |
| | Model M2 (see Table 1) |
| | Model M3 | | 1 | Conv | 4 | 1 × 6 | 1 | | 2 | ReLU | — | — | — | | 3 | Maxpool | — | 1 × 2 | 2 | | 4 | Conv | 4 | 1 × 4 | 1 | | 5 | ReLU | — | — | — | | 6 | Maxpool | — | 1 × 2 | 2 | | 7 | Conv | 8 | 1 × 5 | 1 | | 8 | ReLU | — | — | — | | 9 | Maxpool | — | 1 × 2 | 2 | | 10 | Conv | 8 | 1 × 5 | 1 | | 11 | ReLU | — | — | — | | 12 | Maxpool | — | 1 × 2 | 2 | | 13 | Conv | 8 | 1 × 5 | 1 | | 14 | ReLU | — | — | — | | 15 | Maxpool | — | 1 × 2 | 2 | | 16 | Fc1 | 48 | — | — | | 17 | Fc2 | 32 | — | — | | 18 | Fc3 | 1 | — | — | | 19 | Regression | | — | — |
| | Model M4 | | 1 | Conv | 4 | 1 × 6 | 1 | | 2 | ReLU | — | — | — | | 3 | Maxpool | — | 1 × 2 | 2 | | 4 | Conv | 4 | 1 × 4 | 1 | | 5 | ReLU | — | — | — | | 6 | Maxpool | — | 1 × 2 | 2 | | 7 | Conv | 8 | 1 × 5 | 1 | | 8 | ReLU | — | — | — | | 9 | Maxpool | — | 1 × 2 | 2 | | 10 | Conv | 8 | 1 × 5 | 1 | | 11 | ReLU | — | — | — | | 12 | Maxpool | — | 1 × 2 | 2 | | 13 | Conv | 8 | 1 × 5 | 1 | | 14 | ReLU | — | — | — | | 15 | Maxpool | — | 1 × 2 | 2 | | 16 | Conv | 8 | 1 × 5 | 1 | | 17 | ReLU | — | — | — | | 18 | Maxpool | — | 1 × 2 | 2 | | 19 | Fc1 | 48 | — | — | | 20 | Fc2 | 32 | — | — | | 21 | Fc3 | 1 | — | | | 22 | Regression | | — | — |
|
|