Research Article
Differential Privacy for Edge Weights in Social Networks
Algorithm 1
Merging Barrels and Consistency Inference (MB-CI) algorithm.
| Input: Raw weighted-graph database , privacy budget , parameter | | Output: Disturbed weighted-graph database | | // and contain three column vectors , , , and , , , respectively. | | // represents the starting points of edges. indicates the ends. | | // and store the original edge weights and the disturbed ones. | | (1) Scan once to compute three vectors , , : | | , , . | | (2) | | (3) | | (4) for to | | (5) if then | | (6) | | (7) else | | (8) | | (9) end if | | (10) end for | | (11) if then | | (12) for to | | (13) | | (14) end for | | (15) while | | (16) | | (17) while | | (18) if or then | | (19) | | (20) else | | (21) | | (22) end if | | (23) end while | | (24) | | (25) end while | | (26) for to | | (27) | | (28) end for | | (29) return |
|