Research Article

LA-GRU: Building Combined Intrusion Detection Model Based on Imbalanced Learning and Gated Recurrent Unit Neural Network

Table 7

Comparison of detection rate among different IDMs for five-category classification.

MethodNormalDOSProbeR2LU2R

Imbalanced LearningCANN+SMOTE[9]N/AN/AN/A92.9755.91
MHCVF[10]94.2999.9999.3980.0084.05
DENDRON[11]98.9895.9497.1783.7576.92
I-NGSA[12]99.5899.5996.4784.6188.95

Shallow LearningSVM[2]96.1698.0657.3622.2414.29
OS-ELM[3]99.0799.1490.3556.7578.10
TLMD[4]99.2498.5793.7756.2075.71
GA-LR[32]99.9799.9898.4495.4852.17

Deep LearningCNN+LSTM[13]N/A99.1083.3574.1964.25
S-NADE[14]99.4999.7998.749.310.00
DNN[15]97.4399.599.0091.0091.00
SCDNN[16]98.4297.2380.2311.46.88

Proposed MethodLA-GRU99.2199.1699.2098.3498.61